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1 Fatigue and Fracture 
 

Learning Summary 

1. Know the various stages leading to fatigue failure (knowledge); 

2. Know the basis of the total life and of the damage tolerant approaches to estimating 

the number of cycles to failure (knowledge); 

3. Be able to include the effects of mean and alternating stress on cycles to failure 

using the Gerber, modified Goodman and Soderberg methods (application); 

4. Be able to include the effect of a stress concentration on fatigue life (application); 

5. Be able to apply the S-N design procedure for fatigue life (application); 

6. Know the meaning of linear-elastic fracture mechanics (LEFM) (knowledge); 

7. Know what the three crack tip loading modes are (knowledge); 

8. Be able to use the energy and stress intensity factor (Westergaard crack tip stress 

field) approaches to LEFM (application); 

9. Know the meaning of small-scale yielding and fracture toughness (knowledge); 

10. Understand the Paris equation for fatigue crack growth and the effects of the mean 

and alternating components of the stress intensity factor 

(knowledge/comprehension). 

 

1.1 Fatigue 

1.1.1 Introduction 

Fatigue failure of components and structures results from cyclic (or repeated) loading and 

from the associated cyclic stresses and strains, as opposed to failure due to monotonic 

or static stresses or strains, such as buckling or plastic collapse due to excessive plastic 

deformation yielding. The topic of fatigue is extremely important in mechanical 

engineering, since machines have moving parts, which in turn give rise to stresses and 

strains which may vary with time, typically in a repetitive fashion. For example, the axle of 

a car which will transmit a time-varying torque, that changes from zero to some finite value 

when the car is put into gear and driven (and back to zero again when the car is taken out 

of gear).  
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An important design consideration, with respect to fatigue, is the fact that fatigue failure 

can occur at stresses which are well below the ultimate tensile strength of the material 

and often below the yield strength. 

 

1.1.2 Basic phenomena 

The failure mechanism for an initially un-cracked component with a smooth (polished) 

surface can be split into three parts, namely crack initiation, crack propagation and final 

fracture, as follows: 

(i) Stage I crack growth: The micro-structural phenomenon which causes the initiation 

of a fatigue cracks is the development of persistent slip bands at the surfaces of 

the specimen. These persistent slip bands are the result of dislocations moving 

along crystallographic planes leading to both slip band intrusions and extrusions 

on the surface. These act as excellent stress concentrations and can thus lead to 

crack initiation. Crystallographic slip is primarily controlled by shear stresses rather 

than normal stresses so that fatigue cracks initially tend to grow in a plane of 

maximum shear stress range. This stage leads to short cracks, usually only of the 

order of a few grains.  

 
Figure 1.1: Persistent slip bands in ductile metals subjected to cyclic stress 

 

(ii) Stage II crack growth: As cycling continues, the fatigue cracks tend to coalesce 

and grow along planes of maximum tensile stress range.  

(iii) Final fracture; this occurs when the crack reaches a critical length and results in 

either ductile tearing (plastic collapse) at one extreme, or cleavage (brittle fracture) 

at the other extreme. 
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Figure 1.2: Schematic of stages I and II transcrystalline microscopic fatigue crack 

growth. 

 

1.1.3 Fatigue Life Analysis 

In order to allow for fatigue in the analysis and design of components, a number of 

different approaches are adopted; two of these approaches are described here.  The more 

traditional approach is what is now referred to as the total life approach (see section 1.1.4), 

based on laboratory tests, which are carried out under either stress- or strain-controlled 

loading conditions on idealised specimens. These tests furnish the number of loading 

cycles to the initiation of a ‘measurable’ crack as a function of applied stress or strain 

parameters.  The ‘measurability’ is dictated by the resolution accuracy of the crack 

detection method employed. A typical ‘measurable’ crack is about 0.75 mm to 1 mm. The 

challenge of fatigue design is then to relate these test results to actual component lives 

under real loading conditions. The second approach is known as the damage tolerant 

approach (see section 1.2.5). This approach is based on the inclusion of fatigue as a crack 

growth process, taking account of the fact that all components have inherent flaws or 

cracks. The development of fracture mechanics techniques to predict crack growth has 

facilitated this approach as a competing technique to the total life approach. Both of the 

approaches have advantages and disadvantages; the former has more appeal to design 

engineers while the latter is more often used by material scientists and researchers. 

Nonetheless, even in routine design, the damage tolerant approach is gaining popularity. 

 

1.1.4 Total life approach 

The total life approach is based on the results of stress- and strain-controlled cyclic testing 

of laboratory test specimens of material, in order to obtain the numbers of cycles to failure 
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as a function of the applied alternating stress, for example. Figure 1.3 shows a rotating 

bending test machine set-up. This is a constant load amplitude machine since the load 

doesn’t change even with crack growth. The specimens usually have finely polished 

surfaces to minimise surface roughness effects, which would particularly affect Stage I 

growth. In this approach, no distinction is made between crack initiation and propagation. 

Stress concentration effects can be studied by machining in grooves, notches or holes. 

 

 
Figure 1.3: Rotating bending moment test apparatus for fully-reversed fatigue 

loading.  

 

Traditionally, most fatigue testing was based on fully-reversed (i.e. zero mean stress, Sm 

= 0), stress-controlled conditions and the fatigue design data was presented in the form 

of S-N curves (see Figure 1.6), which are either semi-log or log-log plots of alternating 

stress, Sa, against the measured number of cycles to failure, N, where failure is defined 

as fracture. Some of the important stress parameters for cyclic loading are shown in 

Figure 1.4. 

 
Figure 1.4: Notation used to describe constant load fatigue test cycles.  

 

Figure 1.5 contains schematic representations of two typical S-N curves obtained from 

load (or stress)-controlled tests on smooth specimens. Figure 1.5(a) shows a continuously 
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sloping curve, while Figure 1.5(b) shows a discontinuity or “knee” in the curve. A “knee” 

is only found in a few materials (notably low strength steels) between 106 and 107 cycles 

under non-corrosive conditions. The curves are normally drawn through the median life 

value (of the scatter in N) and thus represents 50 percent expected failure. The fatigue 

life, N, is the number of cycles of stress (or strain) range of a specified character that a 

given specimen sustains before failure of a specified nature occurs. Fatigue strength is a 

hypothetical value of stress range at failure for exactly N cycles as obtained from an S-N 

curve. The fatigue limit (sometimes called the endurance limit) is the limiting value of the 

median fatigue strength as N becomes very large, e.g. >108 cycles.  

 

 
Figure 1.5: Typical S-N diagrams.  

 

1.1.5 Effect of mean stress 

The alternating stress, Sa, and the mean stress, Sm, are defined in Figure 1.4. Early 

investigators of fatigue assumed that only the alternating stress affected the fatigue life of 

a cyclically-loaded component. However, it has since been established that the mean 

stress has a significant effect on fatigue behaviour, as shown in Figure 1.6. It can be seen 

that tensile mean stresses are detrimental while compressive mean stresses are 

beneficial in comparison to zero mean stresses.  
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Figure 1.6: The effect of mean stress on fatigue life. 

 

The effect of mean stress is commonly represented as a plot of Sa versus Sm for a given 

fatigue life. Attempts have been made to develop this relationship into general relations. 

Three of these common relations between allowable alternating stress for a given life as 

a function of mean stress, are shown in Figure 1.7. 
 

 
Figure 1.7: Gerber, modified Goodman and Soderberg relationships between Sa 

and Sm. 

 

The modified Goodman line assumes a linear relationship between the allowable Sa and 

the corresponding mean stress Sm, where the slope and intercepts are defined by the 

fatigue strength, Se, and the material UTS, Su, respectively. The Gerber parabola employs 

the same end-points but, in this case, the relation is defined by a parabola. Finally, the 

Soderberg line again assumes a linear relation, but this time the mean stress axis end-

point is taken as the yield stress, Sy. The modified Goodman line, for example, can be 
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extended into the compressive mean stress region to give increasing allowable alternating 

stress with increasing compressive mean stress, but this is normally taken to be horizontal 

for design purposes and for conservatism.  

 

1.1.6 Effect of stress concentrations 

Ever since the first occurrences of fatigue failure, it has been recognised that such failures 

are most commonly associated with notch-type features in components. It is impossible 

to avoid notches in engineering structures, although the effects of such notches can be 

reduced through appropriate design. The stress concentration associated with notch-type 

features leads typically to local plastic strain which eventually leads to fatigue cracking. 

Consequently, the estimation of stress concentration factors associated with various types 

of notches and geometrical discontinuities has received a lot of attention. This is typically 

expressed in terms of an elastic stress concentration factor (SCF), Kt, which is simply the 

relationship between the maximum local stress and an appropriate nominal stress, as 

follows: 

 

  

 

It was once thought that the fatigue strength of a notched component could be predicted 

as the strength of a smooth component divided by the SCF. However, this is not the case. 

The reduction is, in fact, often less than Kt and is defined by the fatigue notch factor, Kf, 

which is defined as the ratio of the smooth fatigue strength to the notched fatigue strength 

as follows: 

 

  

 

However, this fatigue notch factor is also found to vary with both alternating and mean 

stress level and thus with number of cycles to failure. Figure 1.8 shows the effect of a 

notch, with an SCF of 3.4, on the fatigue behaviour of a wrought aluminium alloy, where 

the smooth lines are for the smooth specimen and the dotted lines are for the notched 
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specimen.  

 

 
Figure 1.8: Constant life diagrams for a wrought aluminium alloy for both smooth 

and notched specimens (SCF = 3.4).  

 

Table 1.1 shows how the fatigue notch factor changes with mean stress level and fatigue 

life. Clearly, the fatigue notch factor increases from 3.2 to 5.7 from 104 cycles to 107 cycles 

at 172 MPa mean stress, but remains unchanged between these lives at 2.3 for zero 

mean stress.  

 

Table 1.1: Fatigue notch factor change with mean stress and fatigue life 

 

 

 

 

1.1.7 S-N Design Procedure for Fatigue 

Constant life diagrams plotted as Sa versus Sm, also called Goodman diagrams, as shown 

in Figure 1.9, can be used in design to give safe estimates of fatigue life and loads.  

 

Mean stress 104 cycles 107 cycles 

0 MPa 51/22 = 2.3 22/9 = 2.3 

172 MPa 42/13 = 3.2 17/3 = 5.7 
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Figure 1.9: Goodman diagram. 

 

(i) The Goodman line connects the endurance limit, Se (or long life fatigue strength), 

to the U.T.S., Su 

(ii)  The fatigue strength for zero mean stress is reduced by the fatigue notch factor, 

Kf. The stress concentration factor, Kt is used if Kf is not known. 

(iii)  For static loading of a ductile component with a stress concentration, failure still 

occurs when the mean stress is equal to the U.T.S. Failure at intermediate values 

of mean stress is assumed to be given by the dotted line. 

(iv)  In order to avoid yield of the whole cross-section of the component, the maximum 

nominal stress must be less than the yield stress, Sy , i.e. Sm+ Sa < Sy 

 This relationship gives the yield line joining Sy to Sy. 

(v) The region of the diagram nearest to the origin is the 'safe' region (can also be 

extended to include compressive yield). 

(vi) A component is assessed by plotting the point corresponding to the nominal 

alternating stress, Sa, and the nominal mean stress, Sm, i.e. not the maximum 

values associated with the notch. The factor of safety is determined from the 

position of the point relative to the safe/fail boundary. 

 i.e. factor of safety  F = OB/OA 
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A procedure similar to that described above for long life can also be used to design for a 

specified number of cycles. In this case the endurance limit and the fatigue notch factor 

are replaced by the fatigue strength and the fatigue notch factor for the specified number 

of cycles. 
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Figure 1.10: Examples of geometries/components with poor and improved fatigue 

strength. 
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1.2 Linear Elastic Fracture Mechanics (LEFM) 

 

1.2.1 Introduction 

Consider the stress concentration factor for an elliptical hole in a large, linear-elastic plate 

subjected to a remote, uniaxial stress. 

 

  
Figure 1.11: Elliptical hole in an infinite plate root radius ellipse 

 

It can be shown that the stress concentration factor is as follows:  

 

   

 

Thus, as b ® 0, the elliptical hole degenerates to a crack, and , so that the notch 

stress also goes to infinity (i.e. becomes singular), , provided the material behaviour 

remains linear elastic.  
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and again, as the notch tip radius goes to zero, i.e. r ® 0, the notch tip stress again goes to 

infinity,  

 

   

 

The singular (infinite) state of stress at a crack tip is one of the fundamental and most 

important aspects of fracture mechanics.  

 
1.2.2 Basis of the energy approach to fracture mechanics 

Griffith (1921) studied the brittle fracture of glass and adopted an energy approach to solve 

the problem.  He reasoned that unstable crack propagation occurs only if an increment of 

crack growth, da, results in more strain energy being released than is absorbed by the 

creation of the new crack surfaces. This can be re-expressed as the change in strain energy 

U, due to crack extension, being greater than the energy absorbed by the creation of the 

new crack surfaces. Thus, if we designate the surface energy per unit area of the crack 

, then the surface energy associated with a crack of length 2a in a body of thickness B (as 

shown in the Figure 1.12) is given by: 

 
   

 

Detailed stress analysis of an elliptical hole in an infinite elastic plate has established that 

the strain energy in such a body is  

 

 
  

 

where s  is the remote stress (away from the hole) and where, for plane strain and plane 

stress, respectively,  
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The total system energy is thus 

 

 
  

 

  
Figure 1.12: Crack in Infinite Plate 

 

According to Griffith, the critical condition for the onset of crack growth is 

 

  
 

Therefore:
 

 

 

 
 

 

where A = 2aB is the crack area and dA denotes an incremental increase in crack area. The 

total surface area of the two crack surfaces is 2A. This relationship is conventionally re-

expressed as  
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where G is called the strain energy release rate, the crack tip driving force or the crack 

extension force. Gc is a material property, which is known as the critical strain energy 

release rate, the toughness or the critical crack extension force. A high value of Gc means 

that it is difficult to cause unstable crack growth in the material whereas a low value means 

it is easy to make a crack grow unstably. Thus, copper, for example, has a value of Gc » 

106 Jm-2, whereas glass has a value of Gc » 10 Jm-2. The following relationships for plane 

stress and plane strain, respectively, follow from the above: 

 

  (plane stress)   

 

  (plane strain)   

 

Note that plane stress and plane strain are two contrasting two-dimensional assumptions 

which permit simplification of three-dimensional problems to two-dimensional ones. Plane 

stress corresponds physically to thin plate type situations while plane strain corresponds 

to thick plate type situations. Plane strain testing of fracture leads to lower values of Gc, 
so that the material property value of Gc for design purposes is taken as the plane strain 

value and is designated as GIc.  

 

The critical stress, which causes a crack to propagate in an unstable fashion, giving 

fracture, is governed by the following relationships 

 

  (plane stress)   

  

 (plane strain) 
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Since the term on the right-hand side of these equations is a material constant and since the 

term on the left hand side is so common, it is usually abbreviated to the symbol, K, which is 

referred to as the stress intensity factor and the equations can be re-expressed as: 

 
   

 

where Kc is called the critical stress intensity factor or the fracture toughness. Thus  

 

 

 

In summary, 

 

 is called the stress intensity factor 

Kc is called the fracture toughness of critical stress intensity factor 

Gc is called the toughness or the critical strain energy release rate. 

 

Note 

Most materials are not linear elastic up to failure. However, the energy approach can still 

be used if the plastic strain is restricted to a region very close to the crack tip; this is 

referred to as small scale yielding. Under these conditions, the energy release rate can 

still be reasonably accurately based on a linear elastic analysis. Also, Gc or GIc now 

includes a component associated with plastic deformation of the crack tip as well as the 

creation of the surfaces. So far, we have only considered the so-called Mode I loading 

case. There are actually three different loading modes considered in fracture mechanics, 

as shown in Figure 1.13. 
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Figure 1.13: Crack tip loading modes 

 

In general, the energy release rate under mixed-mode loading is given by 

 
   

 

1.2.3 Elastic crack tip stress fields 

 
Figure 1.14. Crack tip stress fields 
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Westergaard (1939) established the following equations for the elastic stress field in the 

vicinity of a crack tip: 

 

   

 

  

  

   

 

 

 

KI is the Mode-I stress-intensity factor (units N/m3/2) which defines the magnitude of the 

elastic stress field in the vicinity of the crack tip. Similar expressions exist, in terms of KII and 

KIII, for the Mode II and III loading situations. For mixed-mode loading, the stress fields can 

be added together directly. It can be seen that KI, KII and KIII characterize the entire stress 

field (and hence the strain fields) in the vicinity of the crack tip. It therefore seems reasonable 

to assume that, for Mode I loading for example, failure will occur when KI reaches a critical 

value Kc (KIc under plane strain conditions).  

 

The energy approach and the stress intensity approach are equivalent. Generally, for plane 

stress: 

 

    

 

and for plane strain:  
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Generally, for geometries with finite boundaries, the following expression is employed for 

stress intensity factor 

 

    

 

and similarly for KII and KIII, where Y is a function of the crack and component dimensions.  

 

Table 1.2: Typical Fracture Toughness Values 

Material   

Mild Steel 

Pressure Vessel Steel (HY130) 

Aluminium Alloys 

Cast Iron 

220 

1700 

100 to 600 

200 to 1000 

140 to 200 

170 

45 to 23 

20 to 6 

 

Solutions for Y can be found in the literature for a wide range of geometries and loadings, 

e.g. 

1. H Tada, P Paris and G Irwin, "The stress analysis of cracks handbook", DEL Research 

Corporation, Hellertown, Pennsylvania, 1973. 

2. G P Rooke and D J Cartwright, "Compendium of stress intensity factors", HMSO, 1975. 

3. Y Murakami (Editor), "Stress-intensity factors handbook", Pergamon Press, Oxford 1987, (2 

volumes). 

 

 

aYKI ps=

( )2/mMN ys ( )2/3/mMNKIc
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1.2.4 The effect of finite boundaries on expressions for stress intensity factors 

 

 
Figure 1.15. Stress intensity factors for finite bodies. 
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Example  

A large high carbon steel plate with a thumbnail crack, shown in Figure 1.16, for which  

 

 

 

has a fracture toughness of 72MN/m3/2 and σy = 1450 MPa. 

 

 
Figure 1.16: Thumbnail crack geometry. 

 

If 𝜎 = !
"
𝜎#, determine the critical initial crack size assuming linear elastic material. 

 

Solution 
At fracture, with  

 

𝜎 =
2
3𝜎# =

2
3 × 1450 = 966.67𝑀𝑃𝑎 

 

and 

 

max 1.2K as p=

a
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 𝐾$% = 72 &'

(
!
"#
 

 

Then (from ), 

 

72
𝑀𝑁

𝑚"
!)
= 1.2 × 966.67

𝑀𝑁
𝑚! ×4𝜋 × 𝑎*+,-	𝑚

.
!)  

 

Therefore,  

 

 𝑎*+,- =
.
/
7 0!
..!×344.40

8
!
= 1.226 × 105"𝑚 = 1.226𝑚𝑚 

 

If the material was mild steel, with 𝜎# = 210𝑀𝑃𝑎	𝑎𝑛𝑑	𝐾$% = 200 &'

(
!
"#
, then acrit = 451mm, 

i.e., it is much more likely to be detected during inspection! 

 

1.2.5 Fatigue crack growth 

It has been shown by Paris and co-workers (1961) that, for a wide range of conditions, there 

is a logarithmic linear relationship between crack growth rate and the stress intensity factor 

range during cyclic loading of cracked components. Although this proposition had difficulty 

being accepted initially, it has become the basis of the damage tolerant approach to fatigue 

life estimation and is widely used both in industry and in research. Essentially, it means that 

crack growth can be modelled and estimated based on knowledge of crack and component 

geometry, loading conditions and using experimentally-measured crack growth data to 

furnish material constants. This section describes the basics of this approach.  

 

max 1.2K as p=
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Figure 1.17: Variation of P (load) with t (time) 

 

Considering a load cycle as shown in Figure 1.17 which gives rise to a load range acting on 

a cracked body:  

 
  

 

The load range and crack geometry gives rises to a cyclic variation in stress intensity factor, 

which is given by:  

 

  

 

Even though the stress intensity factor may be less than the critical stress intensity factor for 

unstable crack growth, stable crack growth may occur if the stress intensity range, DK, is 

greater than an empirically-determined material property called the threshold stress intensity 

factor range, designated DKth. In addition, Paris showed that the subsequent crack growth 

can be represented by an empirical relationship as follows: 

 

  

 

where C and m are empirically-determined material constants. This relationship is known as 

the Paris equation. Fatigue crack growth data is often plotted as the logarithm of crack 

growth per load cycle, da/dN, and the logarithm of stress intensity factor range. There are 

minmax PPP -=D

minmax KKK -=D

mKC
dN
da )(  = D



MMME2053 – Mechanics of Solids – Fatigue & Fracture 24 

 

three stages, as shown in Figure 1.18. Below DKth., no observable crack growth occurs; 

region II shows an essentially linear relationship between log(da/dN) and log(DK), where m 

is the slope of the curve and C is the vertical axis intercept; in region III, rapid crack growth 

occurs and little life is involved. Region III is primarily controlled by Kc or KIc.  

 

  
Figure 1.18: Typical (schematic) variation of log (da/dN) with log (ΔK) 

 

The linear regime (Region II) is the region in which engineering components which fail by 

fatigue propagation occupy most of their life. Knowing the stress intensity factor expression 

for a given component and loading, the fatigue crack growth life of the component can be 

obtained by integrating the Paris Equation between the limits of initial crack size and final 

crack size.  

For most materials, the constant C is found to be dependent on R where R is a measure of 

the mean stress defined as: 

 

   

 

as shown below in Figure 1.19.  

 

max
min

K
KR =
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Figure 1.19: Effect of R on fatigue crack growth 

 
Some typical fracture mechanics values for a range of materials are shown in Table 1.3. 

 
Table 1.3: Typical values for DKth, m and DK 

From L.P. Pook, J. Strain Analysis, 1978, pp 114-135. 

(N.B. The DKth and DK (for da/dN = 10-6 mm/cycle) values depend on the R-value.) 

Material DKth (MN/m3/2) m DK (MN/m3/2) 

for da/dN = 10-6 mm/cycle 

Mild Steel 

316 stainless steel 

Aluminium 

Copper 

Brass 

Nickel 

4 to 7 

4 to 6 

1 to 2 

1 to 3 

2 to 4 

4 to 8 

3.3 

3.1 

2.9 

3.9 

4.0 

4.0 

6.2 

6.3 

2.9 

4.3 

4.3 to 66.3 

8.8 


